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PROBLEM STATEMENT 
 

This research project investigated whether hydrologic model-based interpretation of 
transient GPR (ground-penetrating radar) data, the ground wave in particular, can lead to 
improved characterization of soil water dynamics.  The strong dependence of the high-frequency 
dielectric permittivity of a soil on water content has made electromagnetic measurements (e.g., 
time domain reflectometry (TDR), ground-penetrating radar (GPR), and satellite radars) popular 
tools for monitoring near surface moisture conditions [e.g., Huisman et al., 2001; Entekhabi et 
al., 2004].  The GPR ground wave is of particular interest for providing high-resolution maps of 
near-surface water content at the catchment scale [Grote et al., 2003; Weihermuller et al., 2007]; 
such data would be invaluable for applications including understanding local rainfall-runoff and 
infiltration processes as well as calibrating satellite-based radar measurements for real-time 
monitoring of regional moisture conditions.  A limitation of current interpretation techniques, 
however, is the assumption that the effective permittivity derived from a GPR measurement can 
be used to estimate the average water content of a soil, which can subsequently be used to 
interpret hydrologic processes.  Previous studies have shown that problems like preferential 
sampling of high velocity zones by EM waves [Galagedara et al., 2005a,b; Moysey and Knight, 
2004] and dispersive wave guides resulting from the infiltration of water [e.g., van der Kruk, 
2006] can lead to systematic biases in water content estimates.  This problem is compounded if 
the biased water contents are then used to calibrate non-linear unsaturated flow models.  
Following this sequential approach to geophysical data integration, i.e., estimating transient 
water contents with GPR and subsequently performing hydrologic analysis, may therefore lead 
to both inaccurate estimates of water content and poor predictions of unsaturated flow and 
transport.  This research used modeling studies to evaluate whether a new, coupled approach to 
hydrogeophysical estimation of hydrologic parameters could outperform the sequential approach.  
The modeling was complimented by laboratory and field studies to assess whether the coupled 
approach could also be applied to real data.           

 
 

SIGNIFICANCE OF THIS RESEARCH TO THE ARMY 
 
Developing a methodology for the hydrologic analysis of GPR data to characterize soil moisture 
dynamics is of critical importance to the Army for several reasons, including understanding risks 
related to subsurface transport of Army-related contaminants, evaluating ground conditions 
affecting troop maneuvers under changing environmental conditions, and predicting surface 
runoff generation during rain events that can lead to flooding.  Understanding the response of 
ground penetrating radar under dynamic soil moisture conditions is also of the utmost 
importance for improving the Army’s ability to detect targets, such as landmines and buried 
ordinance, under field operating conditions.  
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SUMMARY OF MAJOR RESULTS 
This summary provides a brief overview of work completed and results achieved in this 

research.  A more detailed review of methods and analysis are given in the technical report in the 
appendix. 

 
A. Numerical Comparison of Sequential and Coupled Inversion Schemes 
 The first problem addressed in this research was to assess the ability of sequential versus 
coupled inversion schemes to constrain the parameters of an infiltration model using GPR 
traveltime data.  Analytical models were selected for this analysis to allow for a Markov Chain 
Monte Carlo (MCMC) analysis to be performed.  The Philip [1957] infiltration model was 
selected with a rectangular drainage model for redistribution, which results in 5 unknown 
hydrologic parameters controlling flow (sorptivity (S), saturated hydraulic conductivity (Ks), 
initial water content (θi), saturated water content (θs), shape parameter for K(θ) function (N)).  
This hydrologic model produces a sharp wetting front, which allows for calculation of GPR 
traveltimes (i.e., air wave, ground wave, reflected wave, refracted wave, and multiples) directly 
using ray theory.  The MCMC analysis was performed using the Metropolis-Hastings algorithm 
to sample the posterior distribution of model parameters subject to the GPR data.  In the case of 
sequential inversion GPR traveltime data were used to estimate the depth of the wetting front and 
the water content above and below the wetting front, which were subsequently used to constrain 
the hydrologic model in a second inversion.  In the coupled inversion GPR traveltimes were used 
to directly constrain the hydrologic model.  Several different cases were investigated to evaluate 
the value of using different GPR arrivals as a data constraint, which included (i) the ground wave 
only, (ii) reflection from the wetting front only, and (iii) both the ground wave and reflected 
wave.  A comparison of the true hydrologic parameters with those estimated by the sequential 
versus coupled approach is given in Table 1.  Note that in all cases the traveltime data were 
matched with a low degree of misfit.   

Table 1: Comparison of hydrologic parameter estimates obtained with sequential and coupled 
inversion given different GPR traveltime data as a constraint. 

Ground Wave + Reflection Ground Wave Only  TRUE 
VALUE Sequential Coupled Sequential Coupled 

θi 0.05 0.063 0.048 0.071 0.048 
θs 0.35 0.343 0.349 0.257 0.351 
Ks 0.72 0.560 0.785 0.004 0.836 
S 0.98 0.919 0.986 3.573 0.995 
N 2.00 0.985 4.736 3.328 2.336 

 

For the case where both the ground wave and wetting front reflection are used as data 
constraints, there is a substantial amount of information available to capture the hydrologic 
behavior: the ground wave constrains the water content behind the wetting front while the 
reflection provides independent information on the velocity of the wetting front, which is 
dependent on both flux parameters (K and S) and storage potential (i.e., θs-θi).  As a result, both 
the sequential and coupled inversion provide good estimates of the hydrologic model parameters, 
with the exception of N (Table 1).  In contrast, when only the ground wave is used as a 
constraint, the independent information on the wetting front movement is lost.  The sequential 
inversion therefore yields large uncertainty in both the wetting front depth and initial water 
content, which translates into poor estimates of the hydrologic model parameters (Table 1).  The 
coupled inversion, on the other hand, continues to provide excellent estimates of the hydrologic 
model parameters (Table 1).  This is because the hydrologic model provides an additional 
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constraint beyond the available geophysical data – both the traveltime data and the laws of 
hydrology must be honored at the same time in this inversion scheme.  In this way the hydrologic 
model acts as a physically-based regularization to stabilize the inversion and provide accurate 
parameter estimates.      
 
Conclusions:  This part of the study illustrated that the coupled inversion scheme can 
significantly outperform sequential inversion for estimating unsaturated flow parameters. 
  
B. Laboratory Investigation of GPR Response to Infiltration 

 The second part of this study 
evaluated the response of GPR to infiltration 
events using empirical data.  To this end an 
irrigation system was developed that could 
provide a specified flux of water to the upper 
boundary of a sand box while coincidently 
monitoring the infiltration event with GPR.  
The antennas were kept at a fixed location, 
but sampled continuously during the 
experiment.  In the experiments, the flux 
applied to the upper boundary was varied as 
shown in Figure 1d to create multiple periods 
of transient and pseudo-steady state 
conditions.  Water content sensors were 
located in the upper portion of the box 
(~5.5cm depth) and lower portion of the box 
(~45cm) to independently monitor moisture 
changes during the experiment.   

The GPR data obtained using 
900MHz antennas are shown in Figure 1a.  
Arrivals related to the ground wave and 
reflections originating from the bottom of the 
tank are clearly seen in the data.  Also 
apparent are reflections related to wetting 
fronts resulting from both the initiation of 
flow at early times and from the first change 
in flux after 43 minutes from the start of the 
experiment.  Subsequent wetting fronts at 

ground wave 

second wetting front 
bottom reflection

first wetting front

Figure 1: (a) Observed GPR response during 
infiltration event, dotted line shows comparison to 
arrival times in simulated data; (b) simulated GPR 
response based on lab measurements of hydraulic 
parameters, (c) average observed and simulated 
water content between 4-7cm depth, (d) water 
application schedule. 
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later times appear to have low amplitude given that the soil is already significantly wetted.  The 
patterns observed in the data are in good agreement with the water content trends observed using 
the soil moisture probes (Figure 1c).  Similar results were observed using 450MHz antennas 
except that the separation between the ground wave and reflections from the wetting front 
occurred at later times due to the lower frequency.  As a result, it was more difficult to 
discriminate the wetting front reflections in that data.   
 To evaluate the empirical data, simulations of the GPR response were performed using 
the flow model HYDRUS-1D [Simunek et al., 2008] and a MATLAB based 2D GPR simulator 
created by Irving and Knight [2006].  The flow was simulated using the known boundary 
conditions, i.e., the applied flux in Figure 1d at the upper boundary and a seepage face condition 
on the lower boundary.  The Mualem-van Genuchten model was to fit observed data for the 
unsaturated hydraulic conductivity and pressure-saturation function.  The resulting predicted 
GPR response is shown in Figure 1b and predicted water content near the moisture probes in 
Figure 1c.  The match between the simulated GPR response and the observed data is excellent 
given that the model prediction is based on independent samples and not calibration to the 
observed response.  The ground wave, second wetting front, and bottom reflection are all clearly 
visible.  An exception is the reflection from the first wetting front, which can be found in the 
simulated data but has much lower amplitude than in the empirical response.  The traveltime for 
each of the main arrivals in the simulated data are plotted overtop of the empirical data in Figure 
1a to provide a direct comparison between the results.  It is apparent that there is generally a 
good match except during the period between 50-75 minutes where the simulated traveltimes are 
less than the observed response.  The discrepancy between the observed and simulated water 
content can be explained by the underestimation of observed water content by the simulations in 
the near surface during this period (Figure 1c).      
 
Conclusions:  GPR is highly sensitive to infiltration processes showing strong pattern responses 
originating from the ground wave, reflections from wetting fronts, and subsurface 
heterogeneities (i.e., the tank bottom in this case).  These responses form trajectories in the 
hydrologic data that are characteristic of hydrologic processes (e.g., soil wetting/drying).  
Current simulation tools are sufficient to represent the GPR response to infiltration under 
uniform flow in homogeneous soils.     
 
C. Coherency Analysis of GPR Data for the Estimation of Hydrologic Parameters 

A challenge that was identified in this research is that the MCMC approach to estimating 
hydrologic parameters from GPR data discussed above will likely be difficult to generalize for 
arbitrary hydrologic conditions.  This is because models with a sharp wetting front, such as the 
Philip [1957] model, are limited to fairly simple hydrologic scenarios such as homogeneous soils 
with uniform initial water content and simple boundary conditions (i.e., fixed head or flux).  
Though in some cases these models are appropriate and the approach discussed in Section A can 
be applied, we found that simplified models are not always able to provide reliable simulations 
of water content for variable flux boundaries, such as that shown in Figure 1, given arbitrary soil 
parameters.  As a result, numerical models for flow must be used to simulate water content under 
more general conditions.  In this case, a sharp wetting front may not be defined and ray tracing or 
full numerical solutions to Maxwell’s equations need to be used to simulate GPR responses.   
The increased computational burden could become a limiting factor for the computationally 
intensive MCMC techniques.  To address this problem, a new approach for estimating 
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hydrologic properties that makes use of the trajectories observed in Figure 1 was hypothesized 
and investigated as a computationally efficient means for determining unsaturated flow 
parameters under arbitrary conditions.  The approach is conceptually similar to normal moveout 
methods used to estimate wave velocity [e.g., Fisher et al., 1992].   

A common method for analyzing multi-offset GPR data is to calculate a measure of 
coherency along the hyperbolic trajectory, i.e., normal moveout, describing the change of 
traveltime with antenna offset as a function of EM wave velocity [Neidell and Taner, 1971].  
This method works because the shape of the normal moveout trajectory is directly related to the 
wave velocity.  The velocity that creates a trajectory through the data along which the similarity 
between the traces is maximized (i.e., traces constructively interfere when the normal moveout 
effect is taken into account) is likely the true velocity.   

In the same way, it was speculated in this research that GPR data can be analyzed by 
calculating coherence measures along hydrologically defined trajectories (e.g., Figure 1) to 
determine hydrologic parameters controlling flow.  In this work semblance and the signal power 
for data windows following the trajectories were used as measures of coherency.  A key 
problem, however, is to define the hydrologic trajectories in a computationally efficient manner.  
For situations where a model with a sharp wetting front can be used this is easily accomplished 
using ray-based calculations.  However, for arbitrary hydrologic scenarios an alternative method 
is proposed for finding the trajectories using GPR reflection coefficients.  First, water contents 
are calculated with a numerical simulator (i.e., HYDRUS-1D) as a function of time and depth 
during the infiltration event, which can then be transformed to transient dielectric constant 
profiles.  Converting the dielectric constants to velocity allows for the reflection coefficients to 
be mapped as a function of GPR arrival time.  The reflection coefficients are then filtered to 
identify discrete arrivals that form hydrologic trajectories that are dependent on the initial 
unsaturated flow parameters (and boundary conditions) used to drive the infiltration model.  The 
coherency of GPR data along the trajectories can then be evaluated by extracting the appropriate 
data from the observed GPR response.  Therefore, the underlying hypothesis of the approach is 
that the true hydrologic parameters will produce trajectories that maximize the coherence of the 
GPR data.   

 

 
Figure 2: Signal power along the hydrologic trajectories as a function of the parameters for the Mualem-van 
Genuchten model.  The dashed vertical line indicates the value of the true parameter.  The maximum signal 
coherence is captured near the true parameter value except for the n parameter which does not appear to have a 
unique maximum. 
 

An initial step toward testing this hypothesis was completed by performing a sensitivity 
analysis using the data shown in Figure 1b.  Figure 2 shows the total signal power in the GPR 
data as a function of each of the hydrologic parameters.  The result suggests that coherency of 
the signal is maximized by following a trajectory in the GPR data that is based on the true 
unsaturated flow parameters.  The single major exception is the n parameter of the van 
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Genuchten model for the water retention curve, which is consistent with the result found in 
Section A where the coupled inversion of traveltime data provided a poor constraint on the shape 
parameter (N) of the unsaturated hydraulic conductivity function.     
 
Conclusions:  Analysis of signal coherency along hydrologic trajectories in GPR data could 
provide a means to optimize hydrologic model parameters with minimal computational effort.  
 
D. Field Observations of GPR Response to Infiltration 

Field-scale experiments were conducted to perform an exploratory investigation of 
transient GPR responses during infiltration in heterogeneous soils.  In these experiments, we 
used a sprinkler system to irrigate an approximately 10m x 5m region of a silty-sand soil.  GPR 
was profiled across the site at multiple times during the infiltration experiment.  The GPR was 
profiled between fixed stations, but due to an inability to integrate real-time positioning 
information with our current GPR system and the discontinuation of odometer wheel triggering 
devices by the manufacturer of our radar, we were unable to precisely position the data.  Instead, 
we attempted to consistently move the antennas at a constant velocity across the site – 
introducing the potential for positioning errors.  Despite the possible positioning errors, Figure 3 
illustrates significant shifts in the arrival time of the ground wave and different reflections across 
the site as a result of the infiltration event.  In some areas, there is a change in the character of 
the GPR image, but it is currently unclear whether this is an effect resulting from the water 
infiltration or errors in positioning the antennas.  

 
Conclusions:  Shifts in GPR responses are likely to be clearly observable in field data.  In this 
study we found that improved instrumentation for the positioning of the GPR antennas is needed 
to improve the data quality to allow for calibration 
of hydrologic models with GPR in the field. 
 
 
 
 
 
 
 

 
 
 
 

 
 
Figure 3: Two 10m transects of GPR data collected during
a field infiltration experiment.  The upper image shows the
data collected prior to the start of the irrigation sprinklers.
The bottom image shows the same transect profiled after 16
minutes of water application to the site.  Note the shift in 
the groundwave and other reflections is a result of
increased water content (decreased wave velocity) of the
soils.  

10m
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PROJECT CONCLUSIONS 
 
 This short term research project has demonstrated the potential of GPR for constraining 
the parameters of unsaturated flow models using the coupled approach to hydrogeophysical 
estimation.  This is particularly true when GPR data contain insufficient information to 
independently constrain the hydrologic model.  In this case, the coupled approach allows the 
hydrologic model to regularize the inversion and produce reliable estimates of hydrologic 
parameters.  Stochastic calibration of models using traveltime data was shown to be effective for 
simple flow scenarios.  Coherency analysis along hydrologic trajectories, a new methodology 
that was developed as a result of this research, shows promise for identifying hydrologic model 
parameters for more complicated flow scenarios.  The behavior of the ground wave during 
infiltration was one particular point of interest in this research.  While it was shown that the 
ground wave response is sensitive to flow processes, this research suggests that reflection data 
provide additional information on the rate of flow and can be readily included in model 
calibration algorithms.  Therefore, it is recommended that all GPR arrivals be used to calibrate 
hydrologic models when possible. 
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APPENDIX 
 
STIR: CHARACTERIZATION OF NEAR-SURFACE MOISTURE DYNAMICS USING 
HYDROLOGIC MODEL-BASED INTERPRETATION OF GPR DATA 

ARO Project Number: 54969-EV-II 
 

– FINAL TECHNICAL REPORT – 
 
Abstract:  This report provides a brief summary of activities and accomplishments completed 
under ARO Project Number 54969-EV-II.  The main objective of this short-term research project 
was to test the hypothesis that the GPR ground wave provides useful information for 
constraining hydrologic processes in the vadose zone.  To investigate this problem a series of 
modeling and empirical studies were performed.  The modeling studies examined whether GPR 
data could be directly used to constrain unsaturated hydraulic parameters using different 
approaches to parameter estimation.  The coupled inversion approach, where hydrologic and 
geophysical models are linked together into a single forward model, was found to be an effective 
strategy for estimation of the flow parameters.  Empirical studies focus on both laboratory and 
field tests.  Lab studies were performed in a sand tank with spatially uniform applied infiltration.  
The results of these tests showed excellent sensitivity of GPR to infiltration processes and 
support the conclusions from the modeling studies that GPR can constrain hydrologic processes.  
In practice, however, multiple arrivals should be used in interpretation since the ground wave 
arrival is obscured by the reflection caused by the wetting front at early times during infiltration 
events.  Field tests were performed to determine if transient patterns in GPR data could be 
observed in a heterogeneous environment under non-uniform flow conditions.  These tests 
showed promising evidence to qualitatively suggest that the methodology used in this work will 
be applicable to field operations.  A new method for the analysis based on measuring coherency 
along hydrologic trajectories in GPR data was developed and shown to provide good sensitivity 
to the parameters of the Mualem-van Genuchten model of unsaturated soils.   
 
1. Introduction 

The hypothesis tested in this research is that hydrologic model-based interpretation of 
transient GPR (ground-penetrating radar) data, the ground wave in particular, can lead to 
improved characterization of soil water dynamics.  The strong dependence of the high-frequency 
dielectric permittivity of a soil on water content has made electromagnetic measurements (e.g., 
time domain reflectometry (TDR), ground-penetrating radar (GPR), and satellite radars) popular 
tools for monitoring near surface moisture conditions [e.g., Huisman et al., 2001; Entekhabi et 
al., 2004].  The GPR ground wave is of particular interest for providing high-resolution maps of 
near-surface water content at the catchment scale [Grote et al., 2003; Weihermuller et al., 2007]; 
such data would be invaluable for applications including understanding local rainfall-runoff and 
infiltration processes as well as calibrating satellite-based radar measurements for real-time 
monitoring of regional moisture conditions.  A limitation of current interpretation techniques, 
however, is the assumption that the effective permittivity derived from a GPR measurement can 
be used to estimate the average water content of a soil, which can subsequently be used to 
interpret hydrologic processes.  Previous studies have shown that problems like preferential 
sampling of high velocity zones by EM waves can lead to systematic biases in water content 
estimates [Moysey and Knight, 2004].  This problem is compounded if the biased water contents 



 13

are then used to calibrate non-linear unsaturated flow models.  Following this sequential 
approach to geophysical data integration, i.e., estimating transient water contents with GPR and 
subsequently performing hydrologic analysis, may therefore lead to both inaccurate estimates of 
water content and poor predictions of unsaturated flow and transport.             

This study investigated a new methodology for characterizing the evolution of soil 
moisture using ground penetrating radar.  A unique aspect of this study is that the GPR data (e.g., 
travel times) were directly linked to soil properties controlling infiltration (e.g., hydraulic 
conductivity) by coupling hydrologic process models with geophysical instrument models.  We 
demonstrate this approach using numerical experiments.  The sensitivity of GPR to transient 
infiltration processes was investigated empirically using 1D infiltration experiments performed 
in a laboratory sand tank.  These experiments were used to verify that specific arrivals could be 
identified in the GPR data and to evaluate the sensitivity of the data to infiltration.  Finally, we 
describe exploratory field experiments that were designed to investigate whether the proposed 
methodology could be applied to field studies.     

 
2. Background 
 
2.1 Estimation of water content using GPR 

GPR data – the GPR ground wave in particular – has received increasing attention as a 
tool for mapping near surface water content variations [Du and Rummel, 1994; Du, 1996; van 
Overmeeren et al., 1997; Weiler et al., 1998; Grote et al., 2003; Huisman et al., 2001, 2003; 
Klysz and Balayssac, 2007; Strobbia and Cassiani, 2007; Weihermuller et al., 2007].  The 
ground wave is the portion of energy emitted from a GPR transmitter antenna that travels 
directly to the receiver antenna through the soil (Figure 1).  The travel time between the 
transmitter and receiver can be identified in the radar data and used to determine the velocity of 
the EM wave, which is primarily related to the dielectric permittivity of the soil.  In most soils, 

dielectric permittivity is strongly dependent on water 
content [e.g., Topp et al., 1980; Huisman et al., 
2001].  By keeping the transmitter and receiver 
antennas separated by a fixed spacing as they are 
moved across the ground surface it is possible to 
quickly map near-surface water contents over large 
regions [e.g., Grote et al., 2003]. 

In addition to the ground wave, however, 
multiple other arrivals are also produced as a result 
of alternate pathways transferring energy between 
source and receiver antennas (Figure 2).  Strobbia 
and Cassiani [2007] recently pointed out how 
refracted waves could also severely impact the 
interpretation of water content using the GPR 
ground wave.  Refracted waves occur when energy 
follows a ray path that bypasses low-velocity zones, 
thereby potentially arriving at the receiver earlier 
than direct or reflected waves.  Soil velocities can be 
significantly overestimated if the arrival of a 
refracted wave obscures the ground wave or is 

Figure 1: Near-surface water content
variations can be identified from
fluctuations in the arrival of the GPR
ground wave. The constant-offset 
measurement geometry is shown above
example data (after Grote et al., 2003). 

Airwave 

Groundwave 

Δt 
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Figure 2: (a) Possible ray paths for
energy traveling between GPR transmitter
and receiver antennas when a wet layer is
present near the surface.  (b) Expected
arrival time for each ray path as a
function of antenna separation. Note that
the ground wave arrival may be obscured
at small offsets by the air wave and at
larger offsets by refracted waves. (c) An 
example of CMP data that can be used to
optimize the transmitter-receiver survey 
to minimize wave interference for
profiling studies. (From Strobbia and
Cassiani, 2007). 

mistakenly identified as the ground wave.  Given that infiltration events by nature generate slow 
(i.e., wet) zones overlying fast (i.e., dry) zones, refracted waves might be expected to be a 
common problem.  This is a particularly serious issue for estimating water content from fixed 
offset profiles (of the type shown in Figure 1).  When multi-offset profiles are collected, 
distinctive patterns in the data (e.g., Figure 2b) can be used to discriminate between different 
arrivals and thereby guide interpretation.  However, van der Kruk [2006] recently discussed how 
low velocity layers, like infiltration fronts, can act as a dispersive wave guide that lead to a 
“shingling” effect in multi-offset GPR data; the implication being that incorrect velocities will be 
estimated even in this approach without special inverse procedures.  These issues are significant 
problems for fixed offset GPR data.  Discrimination based on the data alone is not possible and 
errors in the estimation of the ground wave velocity are likely to occur.  In contrast, 
discrimination between alternate subsurface models can be effectively achieved when the field 
data are compared to the results of numerical simulations, even when interference from refracted 
waves occurs [e.g., Strobbia and Cassiani, 2007] or, we hypothesize, when the wave guide effect 
is present.   

Another significant challenge in using the ground wave to investigate soil water 
dynamics is that the support volume of the measurement is not well defined.  Grote et al. [2003] 
cite half the Fresnel zone as the potential depth of investigation, thus making the sample volume 
dependent on measurement frequency, wave velocity in the soil, and antenna separation.  In a 
numerical study Galagedara et al. [2005b] specifically investigated ground wave velocity in a 
material with a near surface wet or dry layer, i.e., scenarios typical of wetting and drying soils.  
They found that the depth of investigation was approximately 60% of the GPR wavelength, thus 
confirming the dependence on measurement frequency and soil velocity.  More importantly, 
when the layer thickness was between ~0.25–0.6 of the GPR wavelength, they observed a nearly 
linear dependence of soil velocity on layer thickness.  It is clear that with this type of simple 
linear mixing, i.e., vsoil = f v1 + (1-f) v2, it is straight forward to determine the apparent velocity 
of a soil (vsoil) if the depth of a wetting front (f) (relative to the GPR wavelength) is known along 
with the velocity (i.e., water content) within the wetted (v1) and dry (v2) zones.  However, it is 
impossible to uniquely estimate the water content in the wetted zone without making 
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Figure 3: Illustration of the non-unique nature of
ground wave data for estimating the velocity and
thickness of a near-surface layer given a simple
linear mixing law.  Every combination of
parameters shown will produce an effective (i.e.,
ground wave) velocity of exactly 0.122 m/ns.  Each
line represents a different possible velocity for the
region below the layer.  Essentially any water
content could be predicted in the near surface layer
unless additional constraints on water content
below the layer and layer thickness are given.        

assumptions regarding the depth of the wetting 
front and initial water content (Figure 3).  Thus 
the measurements of ground wave velocity may 
not lead to a good representation of moisture 
conditions in the very near surface environment 
(e.g., <10cm), which is the critical interface 
between the subsurface, land surface and 
atmosphere.  This problem is evident in the 
empirical results of Galagedara et al. [2005a] 
where they found that a good match between 
GPR and TDR measurements during infiltration 
and drying events could only be obtained when 
the length of the TDR probes was similar to the 
GPR investigation depth.     

The unknown support volume of the 
ground wave, interference from refractions, and 
preferential sampling of high velocity zones are 
all problems that can confound the estimation of 
water content from ground wave data.  However, 
the effect of each of these issues can be readily 
accounted for using forward models describing 
GPR wave propagation.  As a result, the 
hydrologic interpretation of ground wave data 
could be improved significantly if the analysis of the ground wave was performed by comparing 
observed transient field data with numerical simulations through inversion.  In practice, however, 
even with the use of forward modeling, a priori information may be needed to provide an 
additional constraint that would allow investigation of subsurface dynamics during infiltration 
with GPR (e.g., as demonstrated by Figure 2).  This research investigates whether this additional 
level of constraint provided by transient data can be imposed through the use of hydrologic 
models to generate physically possible subsurface realizations that can be used to drive GPR 
forward simulations.   

  
2.2 Hydrologic Model-Based Interpretation of Geophysical Data  

 The current state-of-the-art approach to integrating geophysical methods into hydrologic 
problems is a two-step process (Figure 4).  First geophysical data are collected and analyzed to 
extract information about the distribution of geophysical state variables in the subsurface (e.g., 
extraction of dielectric permittivity from ground wave arrival times).  Rock physics relationships 

Figure 4: The current state-of-the-art integration of geophysical data into a hydrologic problem follows a 
sequential process where geophysical data are collected and analyzed to yield indirect estimates of hydrologic 
state variables (e.g., water content).  In a subsequent analysis effort, these estimates may be used as data within 
an optimization scheme to calibrate the parameters of hydrologic models. 
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are used to convert these values to hydrologic state variables (e.g., water content), which may 
subsequently be used to constrain the parameters governing hydrologic process models.   

A key limitation of this approach is that the resolution of geophysical data is often only 
sufficient to uniquely identify averages of subsurface properties (as demonstrated in Figure 3).  
The inverse problem is therefore typically mathematically stabilized (i.e., regularized) using a 
priori information, such as constraints on spatial continuity of the geophysical properties [e.g., 
Menke, 1984].  Often times the choice of prior information is arbitrary, e.g., through the 
application of a smoothness constraint on the estimated model, rather than selected objectively 
based on observed data or readily identifiable laws.  As a consequence, the rock physics 
conversion from geophysical to hydrologic properties at the field scale can be complicated, 
spatially variable, and dependent on both measurement geometry and subsurface properties 
[Moysey et al., 2005; Singha and Moysey, 2006; Singha et al., 2007].  Moysey et al. [2006] 
speculated that this non-uniqueness problem (and therefore the associated field-scale rock 
physics problem) could be overcome if the laws of hydrology are used to enforce a priori 
constraints on the distribution of geophysical state variables rather than making arbitrary choices 
about the spatial distribution of these properties.        
 Using hydrologic models to constrain the inversion of geophysical data (Figure 5) is a 
relatively new idea that has not yet received an extensive amount of attention [Rucker and Ferre, 
2004; Kowalski et al., 2005; Lambot et al., 2006; Sicilia and Moysey, 2007; Fowler and Moysey, 
2007; Moysey et al., 2007; Hinnell et al, 2008 (submitted to WRR)].  The approach initiates by 
selecting a set of test parameters to run a hydrologic model used to predict the spatial and 
temporal distribution of hydrologic state variables through time.  Point-scale rock physics 
relationships, which are easier to define than field-scale rock physics relationships [Moysey et 
al., 2006], are used to transform the hydrologic state variables to geophysical properties.  A 
geophysical instrument model is then used to replicate the actual experiment performed in the 
field.  A poor comparison between the simulated and observed field data indicates a poor initial 
choice of parameters in the hydrologic model thereby leading to an update of these parameters.  
The model parameters are updated continuously until a good match between the simulated and 
observed geophysical data is obtained.   

 
 

Figure 5: Coupling hydrologic process models with geophysical instrument models establishes a direct link between 
geophysical data and hydrologic parameters.  This new approach to hydrogeophysical data integration avoids the 
geophysical inversion step and therefore does not impose arbitrary prior constraints on the geophysical properties.  
In this approach a priori constraints on the geophysical properties are automatically imposed by the physical laws 
built into the hydrologic model.        
 

Note that in this procedure there is no geophysical interpretation step – the geophysical 
properties are only involved in forward models, not inverse models, so there is no need for the 
assumption of a priori constraints on these properties.  Also, there is no restriction on the 
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complexity of the geophysical data used in the inversion.  For example, rather than extracting 
ground wave travel times from the GPR data, the comparisons between simulated and observed 
data could made for the GPR amplitude record.  As a result, interactions between different 
arrivals may be considered as an opportunity to identify and discriminate processes, rather than a 
problem that reduces data quality. 

To date few studies have used the coupled interpretation approach to calibrate infiltration 
models using GPR data.  Kowalski et al. [2005] illustrated that a coupled analysis could be used 
to estimate flow properties using cross-borehole GPR monitoring of an infiltration event.  
Lambot et al. [2006] performed a synthetic experiment to demonstrate that air-launched radar 
measurements could theoretically be used to constrain infiltration processes.  Sicilia and Moysey 
[2007] performed the first comparative analysis of the sequential (Figure 4) and coupled (Figure 
5) data integration methods.  These authors investigated whether intrinsic permeability values 
could be constrained by monitoring an infiltration event with cross-borehole GPR.  They found 
that the sequential analysis resulted in permeability estimates that consistently underestimated 
true values by an order of magnitude (Figure 6a).  In contrast, the coupled analysis resulted in no 
permeability bias and overall produced much better fits between simulated and observed data 
(Figure 6b).  Hinnell et al. [2008 (submitted to WRR)] present a synthetic study where surface-
based electrical resistivity monitoring of 1D infiltration is used to estimate 5 different soil 
properties.  These authors used an implementation of a Markov Chain Monte Carlo method to 
compare both the estimation accuracy and uncertainty resulting from the sequential versus 
coupled analysis strategies.  Figure 7 shows predictions of the wetting front depth versus time 
based on the flow models calibrated with the resistivity measurements.  Note that the data used 
in either case is identical; the only difference between the results is whether the sequential or 
coupled interpretation technique was used.  These studies illustrate the potential performance 
improvement that can be gained by enforcing hydrologic constraints on the geophysical data.    
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←Figure 6: Comparison of 
objective functions for the 
estimation of permeability 
using (a) sequential and (b) 
coupled analyses of a GPR 
monitored infiltration test.  
Note that the sequential 
approach results in a bias in 
the estimate and higher data 
misfit than the coupled 
approach (Sicilia and 
Moysey, 2007). 
 
→Figure 7: Predicted 
depth of an infiltration front 
using a model calibrated 
with resistivity data using 
(a) sequential  and (b) 
coupled analyses.  Note 
that the sequential approach 
yields much larger levels of 
prediction uncertainty, yet 
the true front still falls 
outside the 95% confidence 
bounds of the prediction. 
(Hinnell et al., 2008).  
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3. Overview of Methods and Results from this Research 
This research investigated the use of GPR dat for constraining hydrologic models using three 
approaches: (1) numerical modeling, (2) laboratory studies, and (3) field studies.  The methods 
and results obtained from each of these is outlined below in the three following sections. 
 
3.1 Numerical Modeling Study 

3.1.1 Description of Model 
 The modeling in this study focused on comparing the sequential (Figure 4) and coupled 
(Figure 5) inversion approaches for estimating hydrologic properties from GPR data.  The initial 
set of numerical experiments considered a scenario of 1D infiltration under zero ponding depth 
in a uniform soil with constant initial water content (θi).  In this case, infiltration can be 
described using the Philip [1957] model where cumulative infiltration I(t) at an arbitrary time t is 
related to the sorptivity (S) and saturated hydraulic conductivity (Ks) of the soil: 

 ( ) tKSttI s+= 2
1

          (1) 
The wetting front zwf in the Philip model is a sharp boundary such that the depth of the interface 
can be defined at any time by the storage capacity of the soil (i.e., θwf-θi) and cumulative 
infiltration:  
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where the water content above the wetting front is θwf, which is equal to the saturated water 
content θs throughout the infiltration period.   
 During the redistribution phase was modeled as a zero flux boundary and flow was 
assumed to be gravity driven.  In this case, further migration of the wetting front must result 
from a decrease in storage, i.e., change of water content above the wetting front.  We used a 
rectangular drainage model [e.g., Jury and Horton, 2004] to represent this process: 
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where Zd is the depth reached by the wetting front at the end of the infiltration period and td is the 
time at which infiltration ceased.  Under gravity driven flow the flux q is controlled by the 
unsaturated hydraulic conductivity K(θ), i.e., q = K(θ).  In this study, an exponential relationship 
was used for the unsaturated conductivity function: 
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where θ is the water content at an arbitrary time t, θs is the water content at saturation, and N is a 
soil-specific parameter.  The water content behind the wetting front at any time after the 
cessation of infiltration, i.e., t-td,  will then be given by:   
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 Though this model is simple, it is also powerful.  For example, Figure 8 compares the soil 
moisture distribution predicted by this model and the numerical solution of Richard’s equation as 
simulated by the numerical model Hydrus1D.  Though the details are slightly different, there is 
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an excellent reproduction of the overall infiltration and redistribution process.  Furthermore, the 
model used here can be used to simulate flow in a fraction of the time required to run a full 
numerical solution, thus is more appropriate for use in stochastic estimation algorithms; the 
simulation in Figure 8a required 18 seconds of computational time on a 1.73GHz desktop 
computer with 2GB of RAM, whereas the simulation in Figure 8b required only 0.01 seconds on 
the same computer.      
 The results shown in Figure 8 also emphasize the fact that the infiltration-redistribution 
model conceptualizes the subsurface as a time-variable, single layer system, i.e., the region 
behind the wetting front above a homogeneous background.  This can therefore also be modeled 
as a single layer system for GPR where we have used Topp’s equation to relate water content 
and dielectric constant [Topp et al., 1980].  Assuming a low-loss environment, the velocity of the 
EM wave is given by v=c/κ0.5, where c is the speed of light and κ is the dielectric constant of the 
soil.  The GPR travel time for various pathways can be calculated analytically for this single 
layer model using ray theory.  For example, the travel time of the ground wave (Tg) would 
simply be Tg = L/vgw, where L is the antenna separation and vwf is the velocity of the EM wave 
behind the wetting front.  Note that at late times, when the wetting front has passed the sampling 
depth of the ground wave vgw would simply be the velocity of the soil behind the wetting front; 
before this time, however, the effective velocity will be an average of the velocities above and 
below the wetting front [e.g., Galagedara et al., 2005b].  Likewise, the travel time for a reflection 
from the wetting front would be given by Twf = 2*( (L/2)2 + zwf

2 )0.5/vwf.      
 
3.1.2 Simulation Details and Estimation Procedure 
 To compare the performance of the sequential and coupled inversion strategies, a 
numerical experiment was conducted where infiltration was simulated for 5 minutes followed by 
a 28.5 minute period of redistribution.  The “true” soil properties used for this test are given in 
Table 1.  The resulting water content distribution as a function of time is shown in Figure 9.  The 
GPR travel times for the ground wave and reflection from the wetting front boundary are given 
in Figure 10; 1% random Gaussian noise was added to each travel time.             
  

Table 1: Soil parameters used in the modeling study 
θi [-] θs [-] Ks [m/day] S [m/day0.5] N [-] 
0.05 0.35 0.72 0.98 2 

(a) (b) 

Figure 8: Comparison of the evolution of water content profiles during an infiltration event as 
determined by (a) solution of Richards’ equation with Hydrus-1D and (b) the Philip infiltration and 
rectangular redistribution model.  Although the details of the depth profiles are slightly different, the 
simple model captures the gross changes in water content that are likely to affect GPR measurements in a 
fraction of the computational time. 
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Figure 10: Travel times for the GPR ground wave and reflection from the 

wetting front during infiltration and redistribution.  Random 
Gaussian noise (1%) was added to each travel time.   
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Figure 9: Position of the wetting front and water contents as a function of 
time during the simulated infiltration experiment.  
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 The noisy travel times in Figure 10 represent the data used to constrain the hydrologic 
parameters of the infiltration and redistribution model using both the sequential and coupled 
inversion.  In the case of sequential inversion (Figure 4), the travel times were first used to 
estimate EM wave velocity above of the wetting front and the depth to the interface.  The 
velocities were then converted to water contents and used as a constraint in a second 
optimization to determine the hydrologic properties.  For the coupled inversion, in contrast, the 
travel times were used as a direct constraint on the hydrologic model using the approach outlined 
in Figure 5.  In both cases, the Metropolis-Hastings algorithm was used to sample the posterior 
probability distribution of the model parameters.  Gaussian distributions were assumed for the 
likelihood function in all cases and candidate distributions for parameters were limited to the 
ranges given in Table 2. 
 

  Table 2: Bounds and initial value of parameters used in Metropolis-Hastings algorithm 
Hydrologic Parameters Geophysical Parameters  

θi [-] θs [-] Ks [m/day] S [m/day0.5] N [-] vwf [m/ns] vi [m/ns] zwf [m] 

Lower Bound 0 0.1 0 0 0 0 0.08 0 
Upper Bound 0.2 0.6 5 5 5 0.1 0.18 1 
Initial Value 0.01 0.3 1.5 0.5 1.5 0.05 0.18 0.5 

 
 
3.1.3 Summary of Results 
 Using MCMC to sample the posterior distribution produces a collection of viable 
parameter sets.  For the sequential inversion 10,000 sets of the three geophysical variables 
(velocity above and below the wetting front and depth to the wetting front) were generated with 
the Metropolis-Hastings algorithm at each observation time; the mean and standard deviation for 
each parameter are shown in Figure 12.  For both the sequential and coupled inversion, the 
Metropolis-Hastings algorithm was used to sample 20,000 samples of the 5 hydrologic 
parameters (i.e., θi, θs, Ks, S, N); the mean and standard deviation of these results are given in 
Tables 3 and 4.  For the sequential inversion this was accomplished by converting each set of 
velocities to water content using the low-loss relationship between velocity and dielectric 
constant (κ = (0.3/v)2, where v is velocity in m/ns) and then applying the Topp equation [1980].  
The resulting water contents were then used as data to constrain the hydrologic model.  In 
contrast, the GPR traveltimes are used directly as a constraint on the hydrologic parameters for 
the linked hydrologic and geophysical model in the coupled inversion.   
 The fit of the GPR traveltimes using the sequential estimation approach is excellent as 
shown in Figure 11.  Despite the excellent fit to the traveltime data, Figure 12 indicates an 
inability to reliably constrain the velocity below the wetting front.  Regardless, the velocity 
above the wetting front and the depth to the front are estimated with reasonable accuracy.  This is 
not surprising since for a 2 layer model the ground wave arrival provides a constraint on velocity 
above the wetting front and the reflected wave provides an independent constraint on the depth 
to the interface.  However, there is also the potential for tradeoffs between layer thickness and 
apparent velocity above the wetting front as described in Figure 3.  This effect is thought to be 
responsible for the “spikes” apparent in the velocity above the wetting front which are paired to 
similar spikes in wetting front depth – note that the traveltime data are still fit very well despite 
the inaccuracy of the velocity and depth estimate.    
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Figure 11: Fit of the GPR traveltime data using the sequential inversion. 

 
 
 
 

 
Figure 12: Sequential estimates of model parameters using MCMC at each time of the simulation 
– (a) velocity above and below the wetting front, (b) water content above and below the wetting 
front, (c) depth to the wetting front.  Dots represent the mean of all parameter sets accepted using 
the Metropolis-Hastings algorithm and dashed lines represent 1σ.  Open circles show the water 
content and wetting front depth predicted by the hydrologic parameter using the best fit (i.e., 
mean) parameters from Table 3.  The solid lines show the true model response. 
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Table 3: Estimation results using GPR traveltimes from both the ground wave and wetting front 
reflection.  Mean and standard deviation of the hydrologic parameters estimated from 
samples from the posterior distributions using MCMC. 

SEQUENTIAL ESTIMATE COUPLED ESTIMATE  TRUE 
VALUE Mean σ Mean σ 

θi 0.05 0.063 0.007 0.048 0.001 
θs 0.35 0.343 0.003 0.349 0.001 
Ks 0.72 0.560 0.073 0.785 0.056 
S 0.98 0.919 0.026 0.986 0.007 
N 2.00 0.985 0.378 4.736 0.165 

 
 The fit to the traveltime data for the coupled inversion is shown in Figure 13.  The main 
difference from the sequential result is that the noise in the data are not fit, while the main trends 
are.  This is a consequence of the fact that the coupled hydrogeophysical model provides a 
regularizing effect on the estimation – the noise in the data cannot be explained by the 
hydrologic model, thus cannot be fit by the coupled geophysical and hydrologic models.  In other 
words, the coupled inversion is more stable and less sensitive to noise than the sequential 
inversion.  The hydrologic response predicted by the best fit parameter estimates for the coupled 
inversion are given in Figure 14.  The match between the true response and that predicted by the 
calibrated model is excellent.   

The estimation procedure described above was repeated using only the ground wave 
traveltimes and again using only the traveltimes for the reflection from the wetting front; the 
results are given in Tables 4 and 5, respectively.  When only the ground wave is used, the 
velocity of the upper layer is well constrained, but the constraint on the wetting front depth that 
had previously been provided by the reflection data is lost (compare Figure 12c to Figure 16c).  
The results of the sequential inversion suggest that knowing the water content of the upper layer 
alone is not sufficient to constrain the model parameters.  In constrast, in the coupled inversion 
good estimates of the hydrologic parameters can still be achieved because the hydrologic model 
implicitly places an additional constraint of how the water contents in the upper layer are 
allowed to change through time.  This extra information along with the ground wave data 
appears to be sufficient to constrain the behavior of the model (Figure 17).  The contrast between 
the performance of the sequential and coupled inversion schemes in this example highlights the 
concept that the hydrologic model provides a physically based regularization on the inversion.      
 

Table 4: Estimation results using GPR traveltimes from only the ground wave.   
SEQUENTIAL ESTIMATE COUPLED ESTIMATE  TRUE 

VALUE Mean σ Mean σ 
θi 0.05 0.071 0.005 0.048 0.001 
θs 0.35 0.257 0.001 0.351 0.002 
Ks 0.72 0.004 0.004 0.836 0.077 
S 0.98 3.573 0.098 0.995 0.014 
N 2.00 3.328 0.228 2.336 0.589 

 

Table 5: Estimation results using GPR traveltimes from only the wetting front reflection.   
SEQUENTIAL ESTIMATE COUPLED ESTIMATE  TRUE 

VALUE Mean σ Mean σ 
θi 0.05 0.082 0.011 0.055 0.022 
θs 0.35 0.297 0.015 0.349 0.003 
Ks 0.72 0.102 0.093 0.696 0.152 
S 0.98 0.624 0.061 0.964 0.071 
N 2.00 0.3.43 1.280 0.822 0.166 
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Figure 13: Fit of the GPR traveltime data using the coupled inversion. 

 

 
Figure 14: Predicted response of the hydrologic model calibrated using coupled inversion:  
(a) velocity above and below the wetting front, (b) water content above and below the wetting 
front, (c) depth to the wetting front.  Solid lines represent the true modeled response, whereas the 
open circles show the water content and wetting front depth predicted by the calibrated hydrologic 
model using the best fit (i.e., mean) parameters from Table 3. 
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Figure 15: Fit of the ground wave traveltime data using the (a) sequential and (b) coupled inversion. 

 
 

Data w/ errors 
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1σ 
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Figure 16: Sequential estimates of 
model parameters – (a) velocity 
above and below the wetting front, 
(b) water content above and below 
the wetting front, (c) depth to the 
wetting front.   
Dots represent the mean of all 
parameter sets accepted using the 
Metropolis-Hastings algorithm and 
dashed lines represent 1 standard 
deviation.  Open circles show the 
water content and wetting front 
depth predicted by the hydrologic 
parameter using the best fit (i.e., 
mean) parameters from Table 4.  
Solid lines show the true model 
response. 

Figure 17: Predicted response of 
the hydrologic model calibrated 
using coupled inversion:  
(a) velocity above and below the 
wetting front, (b) water content 
above and below the wetting front, 
(c) depth to the wetting front.  
Solid lines represent the true 
modeled response, whereas the 
open circles show the water 
content and wetting front depth 
predicted by the calibrated 
hydrologic model using the best fit 
(i.e., mean) parameters from Table 
4. 

(a) (b) (c)

(a) (b) (c)
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Figure 18: Fit of the traveltime for the wetting front reflection using the (a) sequential and (b) coupled inversion. 

(a) (b) 

Data w/ errors 
Predicted by fitted model 

Data w/ errors 
Predicted by fitted model x 

True 
Mean 
1σ Figure 19: Sequential estimates of 

model parameters – (a) velocity 
above and below the wetting front, 
(b) water content above and below 
the wetting front, (c) depth to the 
wetting front.   
Dots represent the mean of all 
parameter sets accepted using the 
Metropolis-Hastings algorithm and 
dashed lines represent 1 standard 
deviation.  Open circles show the 
water content and wetting front 
depth predicted by the hydrologic 
parameter using the best fit (i.e., 
mean) parameters from Table 5.  
Solid lines show the true model 
response. 

Figure 20: Predicted response of 
the hydrologic model calibrated 
using coupled inversion:  
(a) velocity above and below the 
wetting front, (b) water content 
above and below the wetting front, 
(c) depth to the wetting front.  
Solid lines represent the true 
modeled response, whereas the 
open circles show the water 
content and wetting front depth 
predicted by the calibrated 
hydrologic model using the best fit 
(i.e., mean) parameters from Table 
5. 

(a) (b) (c)

(a) (b) (c)
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The results of the sequential and coupled inversions using only traveltimes for the reflection 
from the wetting front are shown in Figures 18-20.  In this case, there is a strong tradeoff 
between the velocity above the wetting front and the depth to the wetting front – many 
combinations of velocity and depth can result in the same traveltime.  This fact is evident in the 
sequential results, where there is a very high correlation between the velocity above the wetting 
front (Figure 19a, lower lines) and wetting front depth (Figure 19c).  Although the sequential 
inversion converged to parameter reasonable parameter estimates in this case, the highest level of 
uncertainty was also achieved indicating the reduced degree of constraint of the model. 
 
3.1.4 Conclusions 
 The coupled inversion scheme was shown to provide better estimates of hydrologic 
model parameters compared to the sequential approach.  Particularly important was the ability of 
the coupled approach to provide accurate parameter estimates even under limited data constraint.  
This result suggests that the coupled inversion approach regularizes the inverse problem using 
the underlying physics driving flow.  Overall, the coupled approach is likely to provide better 
results than sequential inversion, but due to the regularizing role the hydrologic model plays in 
the inversion, further effort should be made to investigate the impact of conceptual errors in the 
hydrologic model on the parameter estimates. 
 
3.2 Laboratory-Scale Study of GPR Response to Infiltration 

The second part of the study investigated the actual response of GPR to infiltration 
events.  The objectives of this work were to evaluate if strong signal responses could be observed 
from hydrologically related arrivals (i.e., ground wave and wetting front reflections).  This 
section also describes a new approach to the analysis of GPR data developed through the course 
of this research. 
 
3.2.1 Experimental Methods 
 The goal of this study was to generate a 
uniform vertical flow field over the region that 
monitored by GPR.  The experiments were 
performed in tanks filled with homogeneous, 
medium grained commercial sand obtained from 
CEMEX USA (e.g., Figure 21).  Gravel was 
placed under the sand to allow for drainage.  
The flux of water applied at the top of the tank 
was controlled using a variable rate peristaltic 
pump (Preston Monostat, Cole-Parmer) 
calibrated for a custom drip irrigation system 
with outlets created on a 1cm x 1cm grid over 
the entire tank surface by using a syringe to 
puncture holes in 6mm Tygon tubing.  Figure 22 
illustrates the irrigation system.  Calibration experiments showed that spatially uniform flow 
could be approximately achieved using the system.  Capacitance probes (EC5, Decagon Devices, 
Inc.) were distributed at two depths and at seven different locations in the tank (shown in Figure 
23) to monitor the uniformity of changes in near-surface water content and the arrival of the 
wetting front at the bottom of the tank.  Tensiometers were also included to monitor pressure in 

Figure 21: Example of the packed sand boxes used 
for the infiltration tests. 
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some experiments, but are not reported on here as technical problems were experienced in 
obtaining reliable data.  
 

The GPR system used in this study was a Sensors 
and Software pulseEKKO 1000 with 450 and 900 MHz 
antennas.  The antennas were placed in the center of the 
tank directly on top of the tubing used for water 
application.  The antenna separation was 37cm, as 
measured from the centers of the transmitter and receiver 
antenna.  The antennas were not moved at any point 
during the experiments.  GPR traces were collected 
approximately every 3 seconds throughout the 
experiment.  No processing was performed on the GPR 
data.    

Independent measurements of soil hydraulic 
properties were performed for samples of the sand used 
to pack the flow tank.  The saturated hydraulic 
conductivity (Ks) of the sand was measured using a 
constant head permeameter.  The saturated water content 
(θs) was obtained gravimetrically by oven drying a 
saturated sample of known volume.  The water retention 
curve was determined using the hanging column method, 
which was fitted using the model of van Genuchten 

[1980] to estimate the residual water content (θr) and parameters α and n.  The resulting 
parameter values from these measurements are given in Table 6. 

 

 
 
 
 

Table 6: Measured hydrologic properties of the sand used in the flow experiments. 
θr θs α∗ 

[cm-1] 
n* Ks 

[cm/min] 
0.041 0.385 0.033 6.26 1.43 

*a and n are fitting parameters from the van Genuchten 
water retention model 

 
 

Figure 21: Illustration of the irrigation 
system with the GPR antennas resting on 
the tubing. 

Figure 23: Illustration of the 
moisture probe distribution used 
to monitor uniformity of flow 
across the sand tanks.  One probe 
was located in each quadrant of 
the tank and three probes were 
located in the center of the tank to 
identify non-uniform flow. 
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Initial experiments while the system was being designed and tested were performed using 
the small flow tank shown in Figure 21, which was only 30cm deep.  Because we dried the sand 
between experiments, the use of the smaller tank allowed us to cycle between wet and dry sand 
during the testing phase of the project.  Figure 24 is included here to show the reason why a 
larger tank was used in later experiments that we report on in the results section and also to 
illustrate the impacts that near-surface heterogeneity may have on GPR data.  In this data, the 
tank depth is too small to allow for the separation of arrivals resulting from the movement of the 
wetting front versus the reflection from the bottom of the tank.  Therefore, it is not possible to 
uniquely identify the response of the wetting front.  For example, it is not possible to pick the 
traveltime for the reflection from the wetting front that would be needed to perform the type of 
model calibration discussed in the previous section of this report.     
 

 
 

Figure 24: Example of GPR data collected in a small tank of 30cm depth.  Note that it is not 
possible to identify unique arrivals related to the wetting front in the tank from those produced by 
the interface at the bottom of the tank.  This figure illustrates why a deep tank is required in this 
research. 

 
The main experiments were conducted in a flow tank packed with sand to a depth of 

50cm, under which 16cm of gravel was placed to ensure good drainage.  During the experiments, 
the rate of flow was changed over time to create both transient and pseudo-steady state moisture 
conditions in the tank.  Capacitance probes were distributed at depths of 5.5 and 45 cm at the 
same seven spatial locations in the tank as shown in Figure 23.  

 
3.2.2 Experimental Results 

The results for the flow experiment monitored using 900MHz and 450MHz GPR 
antennas are shown in Figures 25 and 26, respectively.  The experiment-specific schedule for the 
applied flux to the tank surface is given in Table 7.  A variety of arrivals can be clearly identified 
in the data, including the air wave, ground wave, reflections from two different wetting fronts, 
and a strong reflection at the boundary between sand and gravel.  Coherent noise at late times is 
likely the result of reflections from the sides of the tank and reflection multiples.  
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Table 7: Schedule of applied flux for 900MHz experiment; experiment ended after 156.5 minutes. 
Experiment Time [min] 0.0 4.0 42.0 42.3 64.9 70.7 77.5 77.9 90.0 
Applied Flux [cm/hr] 0 2.1 0 10 0 10 0 21 0 
Experiment Time [min] 95.0 110.3 122.7 131.3 122.7 131.3 136.2 142.8 156.5 
Applied Flux [cm/hr] 21 0 41 0 41 0 41 0 END 

 
Figure 24: Interpreted 900MHz GPR data during an infiltration experiment. 

 

 
Figure 25: Interpreted 450MHz GPR data during an infiltration experiment. 
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Table 8: Schedule of applied flux for 450MHz experiment. 
Experiment Time [min] 0.0 2.0 40.0 68.0 88.0 95.0 128.0 142.0 

Applied Flux [cm/hr] 0.0 2.4 10.9 21.7 0.0 38.8 0.0 END 
 
 There are several significant differences in the results for the two frequencies.  Perhaps 
most importantly, the reflection from the initial wetting front is obvious in the 900MHz data, 
whereas it is difficult to identify in the 450MHz data because of interference between it, the 
ground wave and the reflection from the bottom of the tank.  Another difference is in the 
response of the ground wave arrival time.  There is a much greater change in the ground wave 
traveltime at early times during the experiment for the 900MHz data than the 450MHz data.  
This type of behavior is consistent with the difference in the sampling depth of the ground wave 
for the two frequencies; at lower frequency the sampling depth is larger resulting in a less 
pronounced change in apparent velocity at early times.  These results suggest that all GPR 
arrivals are sensitive to infiltration, but that the frequency used in a monitoring experiment 
should be dependent on the scale of heterogeneity in the subsurface and the length of time of the 
experiment (i.e., maximum depth of the wetting front).   
 
3.2.3 Numerical Validation of Experimental Results 
 To evaluate the empirical data, simulations of the GPR response were performed using 
the flow model HYDRUS-1D [Simunek et al., 2008] and a MATLAB based 2D GPR simulator 
created by Irving and Knight [2006].  The flow was simulated using the known boundary 
conditions of the experiment, i.e., the applied fluxes given in Table 7 at the upper boundary and a 
seepage face condition on the lower boundary.  The independently measured hydraulic properties 
of the sand in Table 6 were used in the simulations.   

A comparison of the observed and simulated GPR response is given in Figure 26.  The 
match between the simulated GPR response and the observed data is excellent given that the 
model prediction is based on independent samples and not calibrated to the observed response.  
The ground wave, second wetting front, and bottom reflection are all clearly visible in the data.  
An exception is the apparent absence of the reflection from the first wetting front.  This arrival 
can be found in the simulated data, but has much lower amplitude than in the empirical response 
so is difficult to identify in the Figure.  The patterns observed for the shifts in the ground wave 
arrival also show excellent qualitative agreement with both the observed and simulated average 
water content between 4-7cm depth; note that the average water content was used to represent 
the support volume of the capacitance sensors.  The traveltime for each of the main arrivals in 
the simulated data are plotted overtop of the empirical data in Figure 26a to provide a direct 
comparison between the results.  It is apparent that there is generally a good match except during 
the period between 50-75 minutes where the simulated traveltimes are less than the observed 
response.  The discrepancy between the observed and simulated water content can be explained 
by the underestimation of observed water content by the simulations in the near surface during 
this period (Figure 26c). 

An important outcome of the empirical and numerical results is the observation of 
hydrologic trajectories in continuously monitored GPR data during infiltration events.  For 
example, the ground wave arrival follows a complex, but well defined path throughout the 
experiment that can be reproduced using existing numerical models.  The ability to reproduce 
complex patterns in the GPR data through time suggests that such patterns may be useful tools 
for hydrologic characterization.     
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3.2.4 Coherency analysis of GPR data using hydrologic trajectories 
The observed temporal trajectories observed in the GPR response to infiltration are 

reminiscent of the spatial trajectories observed in multi-offset data.  Multi-offset surveying, such 
as traditional central midpoint (CMP) and wide angle reflection and refraction (WARR) surveys, 
are well known methods for estimating water content variations with depth [Greaves et al., 1996; 
van Overmeeren et al., 1997; Garambois et al., 2002].  Processing of multi-offset data is typically 
performed by applying normal moveout corrections to determine the one dimensional velocity 
structure of the subsurface [e.g., Yilmaz, 1987].  This is possible because the change in reflector 
traveltime with antenna offset in a common midpoint gather follows a hyperbolic trajectory that 
is directly dependent on RMS velocity (Figure 2).  Neidell and Taner [1971] discussed the use of 
coherency measures, such as semblance, calculated along these moveout trajectories as a means 
for determining velocity in seismic data and the approach has since also become a standard 
method for velocity estimation in GPR workflows [Fisher et al., 1992; Neal, 2004].  Water 

Figure 26: (a) Observed GPR response during 
infiltration event, dotted line shows comparison to 
arrival times in simulated data; (b) simulated GPR 
response based on lab measurements of hydraulic 
parameters, (c) average observed and simulated 
water content between 4-7cm depth, (d) water 
application schedule. 
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content can be calculated from interval velocities in environments with low electrical 
conductivity when an appropriate rock physics relationship is available [Greaves et al., 1996].   

Analogous to the normal moveout approach to estimating velocity, I suggest that the 
temporal trajectories in constant offset GPR data can be used to identify unsaturated flow 
parameters.  Just as in standard semblance analysis to estimate velocity, I propose that it is 
possible to calculate the coherency of the GPR signal along hydrologic trajectories that are 
dependent on hydrologic variables.  This approach to analyzing GPR data would provide a 
unique means for identifying these variables and would be a particularly valuable tool if it could 
be performed by defining the trajectories using methods with low computational cost. 

Predicting the GPR traveltimes for different arrivals, e.g., ground wave, reflections, 
refractions, etc., is straightforward for models with sharp wetting fronts.  In this case, the same 
type of ray calculations performed in Section 3.1 can be used to determine the trajectories as 
function of the hydrologic parameters.  For each set of hydrologic parameters, a window of data 
along the trace is extracted and realigned so that a measure of coherency between the traces, such 
as semblance, can be calculated (Figure 27).   

 
 
 

To explore the use of semblance calculations for different types of arrivals (i.e., ground 
wave, wetting front reflection, and wetting front refraction), a sensitivity analysis was performed 
for each of the hydrologic variables of the Philips infiltration and rectangular drainage model 
described in Section 3.1.2.  The results of the sensitivity analysis are shown in Figure 28 for the 
parameter set given in Table 1 and synthetic GPR data in Figure 27.  The results show that when 
all three arrivals are used in the calculation the semblance reaches a well-defined maximum at 
the true parameter values, except for the N parameter which has a poorly defined maximum 
consistent with the results of the MCMC analyses in Section 3.1.  Taken individually, however, 
the semblance maximum was sometimes poorly defined or was biased toward incorrect values.  
This was particularly true for the ground wave results.  This outcome is not consistent with the 

air wave

ground wave

reflected and 
refracted wave

multiples & 
other arrivals
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Figure 27: (a) Synthetic GPR data 
for the infiltration example using 
the Philip model.  The dashed line 
shows the semblance analysis 
trajectory for the wetting front 
reflection calculated using ray 
theory.  
(b) GPR data extracted in a 1.5ns 
window along the wetting front 
reflection trajectory and realigned.   
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MCMC results discussed earlier where the ground wave was able to provide good constraint on 
the hydrologic model parameters.  This indicates that the sensitivity of the semblance approach is 
slightly different than calibration by traveltimes. 

 
Figure 28: Sensitivity analysis for semblance as a function of parameters of the Philip infiltration 
and rectangular distribution model.  The bottom three rows show results for the ground wave, 
reflected wave from the wetting front, and refracted wave, respectively.  The top row shows 
results by summing the semblance from all three arrivals.  When all three arrivals are combined, 
the maximum semblance occurs at the true parameter values.  

 
 In cases where more complex flow occurs, as in the multi-flux infiltration test performed 
in the lab (Figure 26), more complicated hydrologic models must be used.  In this case, the lack 
of a well-defined wetting front in the model may prevent the calculation of arrival times using 
the approach described above.  An alternate method was developed in this research that is based 
only on analysis of simulated water contents derived from a numerical model.  First, the water 
contents simulated over time are converted to dielectric constants.  The dielectric constants are 
used to calculate profiles of reflection coefficients and velocity variations with depth.  The 
reflection coefficients are indicative of areas where reflections are likely to occur, i.e., strong 
signal returns would be expected in the GPR data.  The velocities are then used to remap the 
reflection coefficients from depth profiles to profiles in terms of GPR arrival times.  The result is 
then filtered to select only the regions with the strongest reflection coefficients, which gives a 
map of trajectories (as in Figure 27).  The trajectories are then used to extract windows out 
windows from the observed GPR data for coherency analysis.  Note that this approach is based 
on reflection coefficients and therefore only provides trajectories related to reflections.  It is 
therefore most suitable for cases where hydrologic changes dominate the GPR response.  A 
sensitivity analysis for the multi-flux infiltration experiment (Figure 26) is given in Figure 29.  In 
this case the total signal power in the window was used as the coherency measure instead of 
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semblance.  The results indicate that excellent constraint of the parameters for the Mualem-van 
Genuchten model for the unsaturated flow parameters can be achieved, except for the n 
parameter.    

 

 
Figure 29: Sensitivity of total signal power along trajectories of GPR data as a function of 
hydrologic parameters for the multi-flux infiltration test.  Note the maximum power occurs at 
the true parameter value (shown with a dashed line). 

 
The sensitivity analyses presented here suggest that the coherency approach to estimating 

hydrologic parameters has excellent potential for the hydraulic analysis of GPR data. 
 

3.3 Field-Scale Study of GPR Response to Infiltration 
Field-scale experiments have also been conducted to perform an exploratory investigation 

of GPR response to infiltration in heterogeneous soils.  In these experiments, we used a sprinkler 
system to irrigate an approximately 10m x 5m region of a silty-sand soil.  Soil moisture probes 
were installed at multiple depths to monitor the movement of the wetting front.  The rate of water 
application over the site was monitored through time using a tipping bucket rain gauge.  GPR 
was profiled across the site at multiple times during the infiltration experiment.  The GPR was 
profiled between fixed stations, but due to an 
inability to integrate in real-time positioning 
information with our current GPR system and the 
discontinuation of odometer wheel triggering 
devices by the manufacturer of our radar, we 
were unable to precisely position the data.  We 
found that careful manual positioning at fixed 
stations was a poor solution to the positioning 
problem because for each GPR profile to be 
collected the sprinklers had to be stopped.  As a 
faster alternative, we attempted to consistently 
move the antennas at a constant velocity across 
the site.  This approach introduced the potential 
for positioning errors.   Despite the possible 

10m

 
Figure 30: Two 10m transects of GPR data collected during 
a field infiltration experiment.  The upper image shows the 
data collected prior to the start of the irrigation sprinklers. 
The bottom image shows the same transect profiled after 16 
minutes of water application to the site.  Note the shift in the 
groundwave and other reflections is a result of increased 
water content (decreased wave velocity) of the soils.  
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positioning errors, Figure 4c illustrates the shift in the arrival time of the groundwave and 
different reflections across the site as a result of the infiltration event.  In some areas, there is a 
change in the character of the GPR image that is likely to be related to the infiltration (i.e., shifts 
in reflections to later times).  These changes are not uniformly distributed over the site and it is 
currently unclear whether this is an effect resulting from heterogeneous water infiltration or 
errors in positioning the antennas.  This experience underscores the need for improved 
positioning capabilities for this type of field research.   

In addition to the collection of GPR data, approximately 30 soil samples were collected 
during the project to characterize soil variability.  Because these soils drain at relatively low 
pressure, we investigated a method for characterizing the soil retention curve suitable for use 
with large numbers of samples.  Each sample was packed in a ~50cm column and then placed 
vertically with one end in a water reservoir.  The samples were allowed to equilibrate such that at 
equilibrium the flux in the column is zero and the pressure distribution is equal to the elevation 
along the column.  The columns were then sampled along their length and the water content was 
measured for each sample, yielding water content measurements at known pressures.  While the 
technique showed promise, problems with packing and sampling the columns put into question 
whether the results are reliable.  Additional analysis and repeat tests are required to fully evaluate 
the results.  
 
 
4. Project Conclusions 
 
 This short term research project has demonstrated the potential of GPR for constraining 
the parameters of unsaturated flow models using the coupled approach to hydrogeophysical 
estimation.  This is particularly true when GPR data contain insufficient information to 
independently constrain the hydrologic model.  In this case, the coupled approach allows the 
hydrologic model to regularize the inversion and produce reliable estimates of hydrologic 
parameters.  Stochastic calibration of models using traveltime data was shown to be effective for 
simple flow scenarios.  Coherency analysis along hydrologic trajectories, a new methodology 
that was developed as a result of this research, shows promise for identifying hydrologic model 
parameters for more complicated flow scenarios.  The behavior of the ground wave during 
infiltration was one particular point of interest in this research.  It was shown that the ground 
wave response is sensitive to flow processes and can be used to calibrate hydrologic models.  
This research also suggests, however, that reflection data provide additional information on the 
rate of flow and can be readily included in model calibration algorithms.  Therefore, it is 
recommended that all GPR arrivals be used to calibrate hydrologic models when possible. 

 
 

 




